查询 API
|
收藏
本文档所描述的内容属于神策分析的高级使用功能,涉及较多技术细节,适用于对相关功能有经验的用户参考。如果对文档内容有疑惑,请咨询您的数据咨询顾问获取一对一的协助。
查询 API 主要用于获取各种数据分析报告。
1. 调用方法
请参见 API 文档 中的调用方法描述。
2. 通用参数
2.1. 属性表达式
几乎所有的 API 都会用到属性表达式,例如按照某个属性进行过滤、分组或者聚合等等。属性包括事件属性和用户属性,事件属性使用 event.事件名.属性名 的方式,例如表示 注册渠道 这个属性的表达式如下:
event.Signup.Channel
用户属性类似,例如表示 用户性别:
user.Gender
2.2. 筛选表达式
筛选表达式同样适用于绝大多数 API,用于表示对某些事件或者用户的筛选操作,使用如下格式的 JSON 表示:
{ // 表示 conditions 里的各个条件的关系是 或 还是 且 "relation": "and", // 具体的条件列表,可以有多个 "conditions": [{ // 条件的左值,是一个属性表达式 "field": "event.BuyGold.$os", // 条件的操作符,这里表示等于 "function": "equal", // 条件的参数,根据不同的操作符可以有一个或者多个 "params": [ "iOS" ] }, { "field": "user.Gender", "function": "equal", "params": [ "男" ] }] }
目前支持的操作符如下:
- equal / notEqual
表示等于/不等于,对字符串、数值类型有效。如果 Params 有多个,则相当于 In 或者 Not In。例如想筛选出来自北京或者上海的用户:
{ "field": "user.$city", "function": "equal", "params": ["北京", "上海"] }
- isTrue / isFalse
只对布尔类型有效。
- isSet / notSet
某个属性是否有值,对字符串、数值类型有效。
- include
针对集合的操作,表示包含某个元素,例如筛选出所有喜欢苹果的用户:
{ "field": "user.FavoriteFruits", "function": "include", "params": ["Apple"] }
- less / greater / between:表示小于/大于/小于且大于,其中 between 是前闭后闭的区间,只对数值类型有效。例如筛选买入黄金的价格在 230 和 232 之间的所有事件:
{ "field": "event.BuyGold.GoldPrice", "function": "between", "params": [230, 232] }
contain / notContain
包含或者不包含,表示字符串的部分匹配,只对字符串类型有效。
- absoluteBetween / relativeBefore / relativeWithin
针对日期类型的操作符,分别表示在一个绝对日期范围/在 N 天之前/在 N 天之内。例如想筛选所有注册时间在 3 天之内的用户:
{ "field": "user.$signup_time", "function": "relativeWithin", "params": [3] }
或者筛选所有在 2015-1-1~2015-1-10 注册的用户:
{ "field": "user.$signup_time", "function": "absoluteBetween", "params": ["2015-01-01", "2015-01-10"] }
3. 行为分析报告
所有的分析报告均有 JSON 和 CSV 两种格式,默认是 JSON 格式,如果需要 CSV 格式的数据可以手动指定 format 参数。例如事件分析报告对应的 CSV 格式的 URL 为: /events/report?format=csv 。
3.1. 事件分析报告
[POST /events/report]
{
"measures":[
{
// 事件名称,特别的,可以使用 $Anything 表示任意事件
"event_name":"payOrder",
// 聚合操作符
"aggregator":"uniq_count",
//(可选)对于指标的筛选条件
"filter": {
"conditions": [
{
"field": "user.sex",
"function": "equal",
"params": [
"男"
]
}
]
}
}
],
// 起始日期
"from_date":"2018-04-30",
// 结束日期
"to_date":"2018-05-02",
// 时间单位,可以是 hour/day/week/month
"unit":"day",
//(可选)筛选条件
"filter":{
"relation":"and",
"conditions":[
{
"field":"event.payOrder.$lib_version",
"function":"equal",
"params":[
"1.6.18"
]
},
{
"field":"event.payOrder.$lib",
"function":"equal",
"params":[
"Android"
]
}
]
},
//(可选)分组属性,可以有零个或者多个
"by_fields":[
"event.payOrder.$screen_width",
"event.payOrder.$screen_height"
],
//(可选)分桶条件,对数值型属性进行分组时,可以自定义分桶条件
"bucket_params":{
"event.payOrder.$screen_width":[2000,3000],
"event.payOrder.$screen_height":[2000]
},
// 是否计算合计值
"detail_and_rollup":true,
//(可选)抽样因子,64为全量,32为2分之1抽样
"sampling_factor":64,
//(可选)使用近似计算
"approx":true,
//(可选)基数计算算法hyperloglog的精度,值越大精度越高,但对应内存占用也会变高,推荐用12。
"hll_precision":12,
//(可选)使用近似计算合计,当“approx”为true时,“approx_total”也设为true,当“approx”为false时,如果“approx_total”为true,那合计会以近似计算算法得出
"approx_total":false,
//(可选)最大分组个数
"limit":1000,
//(可选)使用缓存,若缓存中找不到相应数据,则从数据库读出
"use_cache":true
}
{
"by_fields":[
"event.$Anything.$screen_width",
"event.$Anything.$screen_height"
],
"series":[
"2018-04-30 00:00:00",
"2018-05-01 00:00:00",
"2018-05-02 00:00:00"
],
"rows":[
{
"values":[
[57],
[60],
[38]
],
"by_values":[
"-INF~2000",
"-INF~2000"
]
},
{
"values":[
[7],
[7],
[2]
],
"by_values":[
"2000~3000",
"-INF~2000"
]
}
],
"num_rows": 2,
"total_rows": 2,
"report_update_time": "2018-05-02 13:51:08.356",
"data_update_time": "2018-05-02 16:03:32.000",
"data_sufficient_update_time": "2018-05-02 16:03:32.000",
"truncated": false
}
curl 'https://golddemo.cloud.sensorsdata.cn/api/events/report?token=53f48d27f5ed6e701241d7548093274533d0af3d9d2ae80740a629836897900d&project=default' \
-H 'Content-Type: application/json' \
--data-binary '
{
"measures": [
{
"event_name": "payOrder",
"aggregator": "unique",
"filter": {
"conditions": [
{
"field": "user.sex",
"function": "equal",
"params": [
"男"
]
}
]
}
}
],
"from_date": "2018-04-30",
"to_date": "2018-05-02",
"unit": "day",
"filter": {
"relation": "and",
"conditions": [
{
"field": "event.payOrder.$lib_version",
"function": "equal",
"params": [
"1.6.18"
]
},
{
"field": "event.payOrder.$lib",
"function": "equal",
"params": [
"Android"
]
}
]
},
"by_fields": [
"event.payOrder.$screen_width",
"event.payOrder.$screen_height"
],
"bucket_params": {
"event.payOrder.$screen_width": [
2000,
3000
],
"event.payOrder.$screen_height": [
2000
]
},
"unit":"day",
"detail_and_rollup": true,
"sampling_factor": 64,
"approx": true,
"hll_precision": 12,
"approx_total": false,
"limit": 1000,
"use_cache": true
}
'
关键参数说明:
- **aggregator: **聚合操作符,可取值为:
- general:事件触发次数
- unique:触发用户数
- average/uniqAvg:人均次数/人均值
- sum: 数值总和
- max:数值最大值
- min:数值最小值
- avg:数值平均值
- **field: **若aggregator为sum/max/min/avg,需要添加field字段,即聚合的字段名,与aggregator同级,例如:“field" : "event.payOrder.discountAmount"
- **bucket_params: **分桶条件,对数值型属性进行分组时,可以自定义分桶条件,分桶条件里所包含的属性必须全包含在分组属性“by_fields”
- **limit: **最大分组个数,如果limit较大(超过1W之后,可能引发服务器OOM)。如果不传入该字段,返回的分组数量将根据以下规则计算:10000 / 时间段个数 / 指标个数,时间段个数为 from_date 和 to_date 包含多少个单位为 unit 的时间段,指标个数即 measures 数组个数
3.2. 漏斗分析报告
[POST /funnels/report]
{
// 漏斗 ID
"funnel_id"
: 158,
// 起始日期
"from_date"
:
"2015-04-17"
,
// 结束日期
"to_date"
:
"2015-04-19"
,
// 筛选条件
"filter"
: {
"conditions"
: [
{
"field"
:
"event.$AppStart.$lib_version"
,
"function"
:
"contain"
,
"params"
: [
"0.1.0"
]
},
{
"field"
:
"event.$AppEnd.$lib"
,
"function"
:
"contain"
,
"params"
: [
"python"
]
},
{
"field"
:
"user.Gender"
,
"function"
:
"equal"
,
"params"
: [
"男"
]
}
],
"relation"
:
"and"
},
// (可选)分组属性,按指定步骤事件属性、用户属性或分群名进行分组
"by_field"
:
"event.$AppStart.$os"
,
// 是否限制漏斗所有步骤在事件窗口内,true:不限制,false:限制
"extend_over_end_date"
:
true
,
// (可选)分组的步骤 id,如果为 -1 表示用户属性/分群名,0 表示第一步骤事件属性,若 ”by_field” 中能明确看出为第几步的事件属性/用户属性,则此参数可以不用配置。否则需要配置相应参数值,并且和 ”by_field” 请求参数保持一致
"by_field_step"
: -1,
// (可选)抽样
"sampling_factor"
: 64,
// 指定筛选条件针对的步骤,0 为第一步骤,-1 为用筛选条件为用户属性/用户分群。在请求参数中 "filter" "conditions"中 “field”中指定了每一步骤的事件名及筛选条件,”filter_field_steps”参数可以不用配置。如果配置此参数,需要和 “field” 请求参数中的步骤保持一致。
"filter_field_steps"
: [
0,
1,
-1
]
}
在 1.13 及以上的版本中,我们支持 "from_date" 与 "to_date" 使用"秒级精度"或"天级精度"进行筛选
示例:
// 使用秒级精度
"from_date": "2015-04-17 22:00:00",
"to_date" : "2015-04-18 22:00:00",
- 系统将会匹配出时间范围为 2015-04-17 22:00:00.000 至 2015-04-18 22:00:00.999 的全部数据
// 使用天级精度
"from_date": "2015-04-17",
"to_date" : "2015-04-18",
- 系统将会匹配出时间范围为 2015-04-17 00:00:00.000 至 2015-04-18 23:59:59.999 的全部数据
{
"date_list": [
"$ALL",
"2017-04-17",
"2017-04-18",
"2017-04-19"
],
"funnel_detail": [
{
"steps": [
{
"event_name": "ViewHomePage",
"converted_user": 98726,
"conversion_rate": 100,
"rows": [
{
"converted_user": 76110,
"conversion_rate": 77.09,
"wastage_user": 22616,
"median_converted_time": 1505
},
{
"converted_user": 76110,
"conversion_rate": 77.09,
"wastage_user": 22616,
"median_converted_time": 1505
}
]
},
{
"event_name": "ViewProduct",
"converted_user": 76110,
"conversion_rate": 77.09,
"rows": [
{
"converted_user": 21266,
"conversion_rate": 27.94,
"wastage_user": 54844,
"median_converted_time": 2530
},
{
"converted_user": 21266,
"conversion_rate": 27.94,
"wastage_user": 54844,
"median_converted_time": 2530
}
]
},
{
"event_name": "SubmitOrder",
"converted_user": 21266,
"conversion_rate": 27.94,
"rows": [
{
"converted_user": 17522,
"conversion_rate": 82.39,
"wastage_user": 3744,
"median_converted_time": 939
},
{
"converted_user": 17522,
"conversion_rate": 82.39,
"wastage_user": 3744,
"median_converted_time": 939
}
]
},
{
"event_name": "PayOrder",
"converted_user": 17522,
"conversion_rate": 82.39,
"rows": []
}
],
"completion_rate": 17.75,
"overview": [
[
{
"converted_user": 98726,
"conversion_rate": 100,
"completion_rate": 100
},
{
"converted_user": 76110,
"conversion_rate": 77.09,
"completion_rate": 77.09
},
{
"converted_user": 21266,
"conversion_rate": 27.94,
"completion_rate": 21.54
},
{
"converted_user": 17522,
"conversion_rate": 82.39,
"completion_rate": 17.75
}
],
[
{
"converted_user": 98726,
"conversion_rate": 100,
"completion_rate": 100
},
{
"converted_user": 76110,
"conversion_rate": 77.09,
"completion_rate": 77.09
},
{
"converted_user": 21266,
"conversion_rate": 27.94,
"completion_rate": 21.54
},
{
"converted_user": 17522,
"conversion_rate": 82.39,
"completion_rate": 17.75
}
]
]
},
{
"steps": [
{
"event_name": "ViewHomePage",
"converted_user": 34099,
"conversion_rate": 100,
"rows": [
{
"converted_user": 26813,
"conversion_rate": 78.63,
"wastage_user": 7286,
"median_converted_time": 1537
},
{
"converted_user": 26813,
"conversion_rate": 78.63,
"wastage_user": 7286,
"median_converted_time": 1537
}
]
},
{
"event_name": "ViewProduct",
"converted_user": 26813,
"conversion_rate": 78.63,
"rows": [
{
"converted_user": 7787,
"conversion_rate": 29.04,
"wastage_user": 19026,
"median_converted_time": 2710
},
{
"converted_user": 7787,
"conversion_rate": 29.04,
"wastage_user": 19026,
"median_converted_time": 2710
}
]
},
{
"event_name": "SubmitOrder",
"converted_user": 7787,
"conversion_rate": 29.04,
"rows": [
{
"converted_user": 6449,
"conversion_rate": 82.82,
"wastage_user": 1338,
"median_converted_time": 942
},
{
"converted_user": 6449,
"conversion_rate": 82.82,
"wastage_user": 1338,
"median_converted_time": 942
}
]
},
{
"event_name": "PayOrder",
"converted_user": 6449,
"conversion_rate": 82.82,
"rows": []
}
],
"completion_rate": 18.91,
"overview": [
[
{
"converted_user": 34099,
"conversion_rate": 100,
"completion_rate": 100
},
{
"converted_user": 26813,
"conversion_rate": 78.63,
"completion_rate": 78.63
},
{
"converted_user": 7787,
"conversion_rate": 29.04,
"completion_rate": 22.84
},
{
"converted_user": 6449,
"conversion_rate": 82.82,
"completion_rate": 18.91
}
],
[
{
"converted_user": 34099,
"conversion_rate": 100,
"completion_rate": 100
},
{
"converted_user": 26813,
"conversion_rate": 78.63,
"completion_rate": 78.63
},
{
"converted_user": 7787,
"conversion_rate": 29.04,
"completion_rate": 22.84
},
{
"converted_user": 6449,
"conversion_rate": 82.82,
"completion_rate": 18.91
}
]
]
},
{
"steps": [
{
"event_name": "ViewHomePage",
"converted_user": 34445,
"conversion_rate": 100,
"rows": [
{
"converted_user": 26701,
"conversion_rate": 77.52,
"wastage_user": 7744,
"median_converted_time": 1521
},
{
"converted_user": 26701,
"conversion_rate": 77.52,
"wastage_user": 7744,
"median_converted_time": 1521
}
]
},
{
"event_name": "ViewProduct",
"converted_user": 26701,
"conversion_rate": 77.52,
"rows": [
{
"converted_user": 7407,
"conversion_rate": 27.74,
"wastage_user": 19294,
"median_converted_time": 2594
},
{
"converted_user": 7407,
"conversion_rate": 27.74,
"wastage_user": 19294,
"median_converted_time": 2594
}
]
},
{
"event_name": "SubmitOrder",
"converted_user": 7407,
"conversion_rate": 27.74,
"rows": [
{
"converted_user": 6111,
"conversion_rate": 82.5,
"wastage_user": 1296,
"median_converted_time": 956
},
{
"converted_user": 6111,
"conversion_rate": 82.5,
"wastage_user": 1296,
"median_converted_time": 956
}
]
},
{
"event_name": "PayOrder",
"converted_user": 6111,
"conversion_rate": 82.5,
"rows": []
}
],
"completion_rate": 17.74,
"overview": [
[
{
"converted_user": 34445,
"conversion_rate": 100,
"completion_rate": 100
},
{
"converted_user": 26701,
"conversion_rate": 77.52,
"completion_rate": 77.52
},
{
"converted_user": 7407,
"conversion_rate": 27.74,
"completion_rate": 21.5
},
{
"converted_user": 6111,
"conversion_rate": 82.5,
"completion_rate": 17.74
}
],
[
{
"converted_user": 34445,
"conversion_rate": 100,
"completion_rate": 100
},
{
"converted_user": 26701,
"conversion_rate": 77.52,
"completion_rate": 77.52
},
{
"converted_user": 7407,
"conversion_rate": 27.74,
"completion_rate": 21.5
},
{
"converted_user": 6111,
"conversion_rate": 82.5,
"completion_rate": 17.74
}
]
]
},
{
"steps": [
{
"event_name": "ViewHomePage",
"converted_user": 33579,
"conversion_rate": 100,
"rows": [
{
"converted_user": 25271,
"conversion_rate": 75.26,
"wastage_user": 8308,
"median_converted_time": 1485
},
{
"converted_user": 25271,
"conversion_rate": 75.26,
"wastage_user": 8308,
"median_converted_time": 1485
}
]
},
{
"event_name": "ViewProduct",
"converted_user": 25271,
"conversion_rate": 75.26,
"rows": [
{
"converted_user": 6845,
"conversion_rate": 27.09,
"wastage_user": 18426,
"median_converted_time": 2469
},
{
"converted_user": 6845,
"conversion_rate": 27.09,
"wastage_user": 18426,
"median_converted_time": 2469
}
]
},
{
"event_name": "SubmitOrder",
"converted_user": 6845,
"conversion_rate": 27.09,
"rows": [
{
"converted_user": 5599,
"conversion_rate": 81.8,
"wastage_user": 1246,
"median_converted_time": 928
},
{
"converted_user": 5599,
"conversion_rate": 81.8,
"wastage_user": 1246,
"median_converted_time": 928
}
]
},
{
"event_name": "PayOrder",
"converted_user": 5599,
"conversion_rate": 81.8,
"rows": []
}
],
"completion_rate": 16.67,
"overview": [
[
{
"converted_user": 33579,
"conversion_rate": 100,
"completion_rate": 100
},
{
"converted_user": 25271,
"conversion_rate": 75.26,
"completion_rate": 75.26
},
{
"converted_user": 6845,
"conversion_rate": 27.09,
"completion_rate": 20.38
},
{
"converted_user": 5599,
"conversion_rate": 81.8,
"completion_rate": 16.67
}
],
[
{
"converted_user": 33579,
"conversion_rate": 100,
"completion_rate": 100
},
{
"converted_user": 25271,
"conversion_rate": 75.26,
"completion_rate": 75.26
},
{
"converted_user": 6845,
"conversion_rate": 27.09,
"completion_rate": 20.38
},
{
"converted_user": 5599,
"conversion_rate": 81.8,
"completion_rate": 16.67
}
]
]
}
],
"by_field": "event.$Anything.$os",
"by_values": [
"$ALL",
"iOS"
],
"event_names": [
"ViewHomePage",
"ViewProduct",
"SubmitOrder",
"PayOrder"
],
"report_update_time": "2017-04-21 11:13:47.703",
"data_update_time": "2017-04-21 11:12:56.000",
"data_sufficient_update_time": "2017-04-21 11:12:56.000"
}
curl 'https://golddemo.cloud.sensorsdata.cn/api/funnels/report?token=53f48d27f5ed6e701241d7548093274533d0af3d9d2ae80740a629836897900d&project=default' \
-H 'Content-Type: application/json' \
--data-binary
'{
"from_date":"2015-04-17",
"to_date":"2015-04-19",
"funnel_id":"158",
"filter":{
"conditions":[
{
"field":"event.$AppStart.$lib_version",
"function":"equal",
"params":[
"0.1.0"
]
},
{
"field":"event.$AppEnd.$libe",
"function":"equal",
"params":[
"python"
]
},
{
"field": "user.Gender",
"function": "equal",
"params": [
"男"
]
}
],
"relation":"and"
},
"by_field":"event.$AppStart.$os"
}'
3.3. 留存分析报告
[POST /retentions/report]
{
// 起始日期
"from_date": "2018-04-30",
// 结束日期
"to_date": "2018-05-02",
// 表示获取往后 N 个单位的留存
"duration": "7",
// 第一个事件的信息
"first_event": {
// 事件名
"event_name": "login"
},
// 第二个事件的信息
"second_event": {
// 事件名
"event_name": "submitOrder",
// 事件的筛选条件
"filter": {
"conditions": [
{
"field": "event.submitOrder.$lib",
"function": "equal",
"params": [
"Android"
]
}
],
"relation":"and"
}
},
// (可选)同时显示第三个指标
"measures": [
{
"event_name": "payOrder",
"aggregator": "unique"
}
],
// (可选)用户的筛选条件
"user_filter": {
"conditions": [
{
"field": "user.sex",
"function": "equal",
"params": [
"男"
]
}
],
"relation":"and"
},
// (可选)时间标识,例如上周,优先级高于 from_date 和 to_date
"rangeText": "上周"
// (可选)留存的单位,可以是 day/week/month
"unit": "day",
// (可选)后续事件是否可以超出时间区间
"extend_over_end_date": true,
// (可选)抽样因子,64为全量,32为2分之1抽样
"sampling_factor": 64,
// (可选)是否计算流失,false为计算留存,true为计算流失
"is_wastage": false,
"use_cache": true
}
{
"by_field": "",
"has_first_day": false,
"rows": [
{
"by_value": "2018-04-30",
"total_people": 95,
"cells": [
{
"people": 36,
"percent": 37.89,
// 选择同时显示后,values 的值即为同时显示的指标的值
"values": [
0
]
},
{
"people": 6,
"percent": 6.32,
"values": [
5
]
}
]
},
{
"by_value": "2018-05-01",
"total_people": 91,
"cells": [
{
"people": 25,
"percent": 27.47,
"values": [
0
]
},
{
"people": 1,
"percent": 1.1,
"values": [
1
]
}
]
},
{
"by_value": "2018-05-02",
"total_people": 62,
"cells": [
{
"people": 25,
"percent": 40.32,
"values": [
0
]
}
]
}
],
"report_update_time": "2018-05-02 17:00:21.355",
"data_update_time": "2018-05-02 16:59:43.000",
"data_sufficient_update_time": "2018-05-02 16:59:43.000",
"truncated": false
}
curl 'https://golddemo.cloud.sensorsdata.cn/api/retentions/report?token=53f48d27f5ed6e701241d7548093274533d0af3d9d2ae80740a629836897900d&project=default' \
-H 'Content-Type: application/json' \
--data-binary '
{
"from_date": "2018-04-30",
"to_date": "2018-05-02",
"duration": "7",
"first_event": {
"event_name": "login"
},
"second_event": {
"event_name": "submitOrder",
"filter": {
"conditions": [
{
"field": "event.submitOrder.$lib",
"function": "equal",
"params": [
"Android"
]
}
],
"relation": "and"
}
},
"measures": [
{
"event_name": "payOrder",
"aggregator": "unique"
}
],
"user_filter": {
"conditions": [
{
"field": "user.sex",
"function": "equal",
"params": [
"男"
]
}
],
"relation": "and"
},
"unit": "day",
"extend_over_end_date": true,
"sampling_factor": 64,
"is_wastage": false,
"use_cache": true
}
'
3.4. 分布分析报告
[POST /addictions/report]
{
// 事件名称
"event_name": "submitOrder",
// 起始时间
"from_date": "2018-04-30",
// 结束时间
"to_date": "2018-05-02",
// 事件筛选条件
"filter": {
"conditions": [
{
"field": "event.submitOrder.$lib",
"function": "equal",
"params": [
"Android"
]
}
],
"relation":"and"
},
// 用户筛选条件
"user_filter": {
"conditions": [
{
"field": "user.sex",
"function": "equal",
"params": [
"男"
]
}
],
"relation":"and"
},
// (可选)时间标识,如:上周,优先级高于from_date、to_date
"rangeText":"上周",
// 抽样因子,64为全量,32为2分之1抽样
"sampling_factor":64,
// 事件单位,可以是 day/week/month
"unit": "day",
// 测量类型,可以是times/period, period是当按小时数或者天数进行分布分析时使用
"measure_type":"times",
//测量类型如果是times,即可以自定义分桶,可省略
"result_bucket_param": [
2,
3
]
}
{
"by_field": "",
"rows": [
{
"by_value": "2018-04-30",
"total_people": 455,
"cells": [
{
"people": 436,
"percent": 95.82,
"bucket_end": 2
},
{
"people": 19,
"percent": 4.18,
"bucket_start": 2,
"bucket_end": 3
}
]
},
{
"by_value": "2018-05-01",
"total_people": 499,
"cells": [
{
"people": 484,
"percent": 96.99,
"bucket_end": 2
},
{
"people": 15,
"percent": 3.01,
"bucket_start": 2,
"bucket_end": 3
}
]
},
{
"by_value": "2018-05-02",
"total_people": 280,
"cells": [
{
"people": 273,
"percent": 97.5,
"bucket_end": 2
},
{
"people": 7,
"percent": 2.5,
"bucket_start": 2,
"bucket_end": 3
}
]
}
],
"report_update_time": "2018-05-02 17:15:26.739",
"data_update_time": "2018-05-02 17:14:10.000",
"data_sufficient_update_time": "2018-05-02 17:14:10.000",
"truncated": false
}
curl 'https://golddemo.cloud.sensorsdata.cn/api/addictions/report?token=53f48d27f5ed6e701241d7548093274533d0af3d9d2ae80740a629836897900d&project=default' \
-H 'Content-Type: application/json' \
--data-binary '
{
"event_name": "submitOrder",
"from_date": "2018-04-30",
"to_date": "2018-05-02",
"filter": {
"conditions": [
{
"field": "event.submitOrder.$lib",
"function": "equal",
"params": [
"Android"
]
}
],
"relation": "and"
},
"user_filter": {
"conditions": [
{
"field": "user.sex",
"function": "equal",
"params": [
"男"
]
}
],
"relation": "and"
},
"sampling_factor": 64,
"unit": "day",
"measure_type": "times",
"result_bucket_param": [
2,
3
]
}
'
3.5. 用户路径分析报告
[POST /path/analytics/report]
{
// 起始事件是initial_event, 结束事件是termination_event
"source_type": "initial_event",
// 起始事件和对起始事件的过滤
"source_event": {
"event_name": "StartApp",
"filter": {
"conditions": [
{
"field": "event.StartApp.$wifi",
"function": "isTrue",
"params": []
}
]
}
},
"event_names": [
"BuyBullion",
"BuyGold",
"SaleGold",
"StartApp"
],
"by_fields": [
"event.BuyBullion.$country"
],
// (可选)列数量的限制
"col_limit": 20,
// (可选)每列节点数限制
"row_limit": 7,
"from_date": "2017-05-01",
"to_date": "2017-05-22",
"user_filter": {},
"bucket_params": {},
"sampling_factor": 64,
"session_interval": 1200,
"use_cache": true
}
{
"nodes": [
[
{
"id": "0_StartApp",
"event_name": "StartApp",
"times": 27336
}
],
[
{
"id": "1_StartApp",
"event_name": "StartApp",
"times": 163
},
{
"id": "1_BuyGold",
"event_name": "BuyGold",
"times": 118
},
{
"id": "1_SaleGold",
"event_name": "SaleGold",
"times": 104
},
{
"id": "1_BuyBullion_$country_3392903",
"event_name": "BuyBullion",
"times": 37
}
],
[
{
"id": "2_SaleGold",
"event_name": "SaleGold",
"times": 68
},
{
"id": "2_BuyGold",
"event_name": "BuyGold",
"times": 50
},
{
"id": "2_BuyBullion_$country_3392903",
"event_name": "BuyBullion",
"times": 18
},
{
"id": "2_StartApp",
"event_name": "StartApp",
"times": 2
}
],
[
{
"id": "3_SaleGold",
"event_name": "SaleGold",
"times": 39
},
{
"id": "3_BuyGold",
"event_name": "BuyGold",
"times": 23
},
{
"id": "3_BuyBullion_$country_3392903",
"event_name": "BuyBullion",
"times": 1
}
],
[
{
"id": "4_StartApp",
"event_name": "StartApp",
"times": 1
}
]
],
"links": [
[
{
"source": "0_StartApp",
"target": "1_wastage",
"is_wastage": true,
"times": 26914
},
{
"source": "0_StartApp",
"target": "1_StartApp",
"times": 163
},
{
"source": "0_StartApp",
"target": "1_BuyGold",
"times": 118
},
{
"source": "0_StartApp",
"target": "1_SaleGold",
"times": 104
},
{
"source": "0_StartApp",
"target": "1_BuyBullion_$country_3392903",
"times": 37
}
],
[
{
"source": "1_StartApp",
"target": "2_wastage",
"is_wastage": true,
"times": 160
},
{
"source": "1_StartApp",
"target": "2_StartApp",
"times": 2
},
{
"source": "1_StartApp",
"target": "2_BuyBullion_$country_3392903",
"times": 1
},
{
"source": "1_BuyGold",
"target": "2_wastage",
"is_wastage": true,
"times": 68
},
{
"source": "1_BuyGold",
"target": "2_BuyGold",
"times": 50
},
{
"source": "1_SaleGold",
"target": "2_SaleGold",
"times": 68
},
{
"source": "1_SaleGold",
"target": "2_wastage",
"is_wastage": true,
"times": 36
},
{
"source": "1_BuyBullion_$country_3392903",
"target": "2_wastage",
"is_wastage": true,
"times": 20
},
{
"source": "1_BuyBullion_$country_3392903",
"target": "2_BuyBullion_$country_3392903",
"times": 17
}
],
[
{
"source": "2_SaleGold",
"target": "3_SaleGold",
"times": 39
},
{
"source": "2_SaleGold",
"target": "3_wastage",
"is_wastage": true,
"times": 29
},
{
"source": "2_BuyGold",
"target": "3_wastage",
"is_wastage": true,
"times": 27
},
{
"source": "2_BuyGold",
"target": "3_BuyGold",
"times": 23
},
{
"source": "2_BuyBullion_$country_3392903",
"target": "3_wastage",
"is_wastage": true,
"times": 17
},
{
"source": "2_BuyBullion_$country_3392903",
"target": "3_BuyBullion_$country_3392903",
"times": 1
},
{
"source": "2_StartApp",
"target": "3_wastage",
"is_wastage": true,
"times": 2
}
],
[
{
"source": "3_SaleGold",
"target": "4_wastage",
"is_wastage": true,
"times": 38
},
{
"source": "3_SaleGold",
"target": "4_StartApp",
"times": 1
},
{
"source": "3_BuyGold",
"target": "4_wastage",
"is_wastage": true,
"times": 23
},
{
"source": "3_BuyBullion_$country_3392903",
"target": "4_wastage",
"is_wastage": true,
"times": 1
}
],
[
{
"source": "4_StartApp",
"target": "5_wastage",
"is_wastage": true,
"times": 1
}
]
],
"truncate_row": [],
"truncate_col": false,
"report_update_time": "2017-05-22 11:07:40.544",
"data_update_time": "2017-05-22 11:06:54.000",
"data_sufficient_update_time": "2017-05-22 11:06:54.000"
}
curl 'https://golddemo.cloud.sensorsdata.cn/api/path/analytics/report?token=53f48d27f5ed6e701241d7548093274533d0af3d9d2ae80740a629836897900d&project=default' \
-H 'Content-Type: application/json' \
--data-binary '
{
"source_type": "initial_event",
"source_event": {
"event_name": "StartApp",
"filter": {
"conditions": [
{
"field": "event.StartApp.$wifi",
"function": "isTrue",
"params": []
}
]
}
},
"event_names": [
"BuyBullion",
"BuyGold",
"SaleGold",
"StartApp"
],
"by_fields": [
"event.BuyBullion.$country"
],
"col_limit": 20,
"row_limit": 7,
"from_date": "2017-05-01",
"to_date": "2017-05-22",
"user_filter": {},
"bucket_params": {},
"sampling_factor": 64,
"session_interval": 1200,
"use_cache": true
}
'
3.6. 属性分析报告
[POST /user/analytics/report]
{
"measures": [
{
"aggregator": "count",
"field": ""
}
],
"filter": {
"conditions": [
{
"field": "user.HasByGold",
"function": "isTrue",
"params": []
}
]
},
"by_fields": [
"user.IncomeLevel",
"user.Gender"
],
"sampling_factor": null,
// 横轴分组指标
"x_axis_field": "user.IncomeLevel",
"use_cache": false
}
{
"by_fields": [
"user.Gender"
],
"series": [
"5000~10000",
"3000~5000",
"10000~20000",
"0~3000",
null
],
"rows": [
{
"values": [
[
83169
],
[
27776
],
[
55699
],
[
27892
],
[
36106
]
],
"by_values": [
"男"
]
},
{
"values": [
[
55363
],
[
18208
],
[
37030
],
[
18668
],
[
24090
]
],
"by_values": [
"女"
]
},
{
"values": [
[
25864
],
[
8490
],
[
17327
],
[
8628
],
[
17353
]
],
"by_values": [
null
]
}
],
"num_rows": 3,
"report_update_time": "2017-05-22 14:16:03.595",
"data_update_time": "1970-01-01 08:00:00.000",
"data_sufficient_update_time": "1970-01-01 08:00:00.000"
}
curl 'https://golddemo.cloud.sensorsdata.cn/api/user/analytics/report?token=53f48d27f5ed6e701241d7548093274533d0af3d9d2ae80740a629836897900d&project=default' \
-H 'Content-Type: application/json' \
--data-binary '
{
"measures": [
{
"aggregator": "count",
"field": ""
}
],
"filter": {
"conditions": [
{
"field": "user.HasByGold",
"function": "isTrue",
"params": []
}
]
},
"by_fields": [
"user.IncomeLevel",
"user.Gender"
],
"sampling_factor": null,
"x_axis_field": "user.IncomeLevel",
"request_id": 1495433768121,
"use_cache": false
}
'
4. 用户明细查询
用户明细系列接口用于查询某一个特定分析报告中的具体用户列表,请求的大部分参数与分析报告相同,新增的参数会在每个接口里具体说明。用户列表也支持 JSON 和 CSV 两种格式,默认式 JSON 格式,如果需要 CSV 格式的数据可以手动指定 format 参数。例如事件分析的用户列表对应的 CSV 格式的 URL 为: /events/user/list?format=csv。
4.1. 事件分析用户明细报告
[POST /events/user/list]
{
"measures": [
{
"aggregator": "unique",
"event_name": "SaleGold"
}
],
"filter": {
"conditions": [
{
"field": "event.SaleGold.$city",
"function": "equal",
"params": [
"厦门市"
]
},
{
"field": "event.SaleGold.$app_version",
"function": "equal",
"params": [
"1.7"
]
}
]
},
"by_fields": [
"event.SaleGold.$app_version",
"event.SaleGold.$screen_width"
],
"rollup_date": false,
"unit": "week",
// 查看哪个分组的用户明细
"slice_by_values": [
"1.7",
1080
],
// 查看哪天的用户明细,比如2015年8月18号当周
"slice_date": "2015-08-18 00:00:00",
// 是否展示详情,如果 true,则会按照 profile 中的列返回,false 则只返回基本的 id 列
"detail": true,
// 默认值30,表示每页展示用户数,可不加
"num_per_page": 10,
// 请求的页数
"page":1,
// 限制返回的条数
"limit": 100000,
// 是否返回所有用户,如果为 true,则会无视分页参数,否则需要加上分页参数
"all_page": true
}
{
"users": [
{
"id": "1902482830",
"first_id": "23e3ff2a3ff1e1bc",
"second_id": "1696144579",
"profiles": {
"FavoriteFruits": [
"Raspberry",
"Orange"
],
"$name": "陈爍簀",
"IncomeLevel": "3000~5000",
"$city": "德阳市",
"$province": "四川省",
"$signup_time": 1.432805251963E12,
"Gender": "男",
"Age": 20.0
}
},
{
"id": "3834577070",
"first_id": "51b0fecc44b5c75b",
"second_id": "1602971488",
"profiles": {
"FavoriteFruits": [
"Cranberry",
"Guava",
"cantaloupe"
],
"$name": "周瀌狙",
"IncomeLevel": "10000~20000",
"$city": "嘉峪关市",
"$province": "甘肃省",
"$signup_time": 1.432799799529E12,
"Gender": "女",
"Age": 20.0
}
}
],
"size": 2,
"page_num": 1, // 页数,总人数/每页展示用户数
"column_name":[
"FavoriteFruits",
"$name",
"Age",
"Gender",
"IncomeLevel",
"$signup_time",
"$city",
"$province"
]
}
curl 'https://golddemo.cloud.sensorsdata.cn/api/events/user/list?token=53f48d27f5ed6e701241d7548093274533d0af3d9d2ae80740a629836897900d&project=default' \
-H 'Content-Type: application/json' \
--data-binary '
{
"measures":[
{
"aggregator":"unique",
"event_name":"SaleGold"
}
],
"filter":{
"conditions":[
{
"field":"event.SaleGold.$city",
"function":"equal",
"params":[
"厦门市"
]
},
{
"field":"event.SaleGold.$app_version",
"function":"equal",
"params":[
"1.7"
]
}
]
},
"by_fields":[
"event.SaleGold.$app_version",
"event.SaleGold.$screen_width"
],
"rollup_date":false,
"unit":"week",
"slice_by_values":[
"1.7",
1080
],
"slice_date":"2015-08-18 00:00:00",
"detail":true,
"num_per_page":10,
"page":1,
"limit":100000,
"all_page":true
}
'
4.2. 漏斗分析用户明细报告
[POST /funnels/user/list]
{
"funnel_id": 158,
"from_date": "2015-04-17",
"to_date": "2015-07-16",
"filter": {
"conditions": [
{
"field": "event.$Anything.$lib_version",
"function": "contain",
"params": [
"0.1.0"
]
},
{
"field": "event.$Anything.$lib",
"function": "contain",
"params": [
"python"
]
},
{
"field": "user.Gender",
"function": "equal",
"params": [
"男"
]
}
],
"relation": "and"
},
"by_field": "event.SaleGold.$lib_version",
// 用户明细的分组值
"slice_by_value": "0.1.0",
// 用户明细的步骤
"slice_step": 0,
// true 表示查看流失用户明细,false 表示转化用户
"slice_wastage_user": false,
// 是否展示详情,如果 true,则会按照 profile 中的列返回,false 则只返回基本的 id 列
"detail": true,
// 请求的页数
"page":1,
// 每页数据条数
"num_per_page": 30,
// 限制返回的条数
"limit": 100000,
// 是否返回所有用户,如果为 true,则会无视分页参数,否则需要加上分页参数
"all_page": true
}
{
"users": [
{
"id": "1902482830",
"first_id": "23e3ff2a3ff1e1bc",
"second_id": "1696144579",
"profiles": {
"FavoriteFruits": [
"Raspberry",
"Orange"
],
"$name": "陈爍簀",
"IncomeLevel": "3000~5000",
"$city": "德阳市",
"$province": "四川省",
"$signup_time": 1.432805251963E12,
"Gender": "男",
"Age": 20.0
}
},
{
"id": "3834577070",
"first_id": "51b0fecc44b5c75b",
"second_id": "1602971488",
"profiles": {
"FavoriteFruits": [
"Cranberry",
"Guava",
"cantaloupe"
],
"$name": "周瀌狙",
"IncomeLevel": "10000~20000",
"$city": "嘉峪关市",
"$province": "甘肃省",
"$signup_time": 1.432799799529E12,
"Gender": "女",
"Age": 20.0
}
}
],
"size": 2,
"page_num": 1,
"column_name":[
"FavoriteFruits",
"$name",
"Age",
"Gender",
"IncomeLevel",
"$signup_time",
"$city",
"$province"
]
}
curl 'https://golddemo.cloud.sensorsdata.cn/api/funnels/user/list?token=53f48d27f5ed6e701241d7548093274533d0af3d9d2ae80740a629836897900d&project=default' \
-H 'Content-Type: application/json' \
--data-binary '
{
"funnel_id":158,
"from_date":"2015-04-17",
"to_date":"2015-07-16",
"filter":{
"conditions":[
{
"field":"event.$Anything.$lib_version",
"function":"contain",
"params":[
"0.1.0"
]
},
{
"field":"event.$Anything.$lib",
"function":"contain",
"params":[
"python"
]
},
{
"field":"user.Gender",
"function":"equal",
"params":[
"男"
]
}
],
"relation":"and"
},
"by_field":"event.SaleGold.$lib_version",
"slice_by_value":"0.1.0",
"slice_step":0,
"slice_wastage_user":false,
"detail":true,
"page":1,
"num_per_page":30,
"limit":100000,
"all_page":true
}
'
4.3. 留存分析用户明细报告
[POST /retentions/user/list]
{
"first_event": {
"event_name": "BuyGold",
"filter": {
"conditions": [
{
"field": "event.BuyGold.$lib_version",
"function": "contain",
"params": [
"0.1.0"
]
}
]
}
},
"second_event": {
"event_name": "StartApp"
},
//是否流失用户,默认留存用户
"is_wastage": false,
// 指定哪些用户属性,为空表示所有用户属性
"profiles": [],
"duration": 7,
"from_date": "2015-07-21",
"to_date": "2015-07-24",
"unit": "day",
"by_field": "event.SaleGold.$lib_version",
// 用户明细分的分组值
"slice_by_value": "0.1.0",
// 查看第几天留存的用户明细,0 表示当天,null 表示全部
// 表示随后第几天留存
"slice_interval": 1,
// 是否展示详情,如果 true,则会按照 profile 中的列返回,false 则只返回基本的 id 列
"detail": true,
// 请求的页数
"page":1,
// 每页数据条数
"num_per_page": 30,
// 限制返回的条数
"limit": 100000,
// 是否返回所有用户,如果为 true,则会无视分页参数,否则需要加上分页参数
"all_page": true
}
{
"users": [
{
"id": "1902482830",
"first_id": "23e3ff2a3ff1e1bc",
"second_id": "1696144579",
"profiles": {
"FavoriteFruits": [
"Raspberry",
"Orange"
],
"$name": "陈爍簀",
"IncomeLevel": "3000~5000",
"$city": "德阳市",
"$province": "四川省",
"$signup_time": 1.432805251963E12,
"Gender": "男",
"Age": 20.0
}
},
{
"id": "3834577070",
"first_id": "51b0fecc44b5c75b",
"second_id": "1602971488",
"profiles": {
"FavoriteFruits": [
"Cranberry",
"Guava",
"cantaloupe"
],
"$name": "周瀌狙",
"IncomeLevel": "10000~20000",
"$city": "嘉峪关市",
"$province": "甘肃省",
"$signup_time": 1.432799799529E12,
"Gender": "女",
"Age": 20.0
}
}
],
"size": 2,
"page_num": 1,
"column_name":[
"FavoriteFruits",
"$name",
"Age",
"Gender",
"IncomeLevel",
"$signup_time",
"$city",
"$province"
]
}
curl 'https://golddemo.cloud.sensorsdata.cn/api/retentions/user/list?token=53f48d27f5ed6e701241d7548093274533d0af3d9d2ae80740a629836897900d&project=default' \
-H 'Content-Type: application/json' \
--data-binary '
{
"first_event":{
"event_name":"BuyGold",
"filter":{
"conditions":[
{
"field":"event.BuyGold.$lib_version",
"function":"contain",
"params":[
"0.1.0"
]
}
]
}
},
"second_event":{
"event_name":"StartApp"
},
"is_wastage":false,
"profiles":[
],
"duration":7,
"from_date":"2015-07-21",
"to_date":"2015-07-24",
"unit":"day",
"by_field":"event.SaleGold.$lib_version",
"slice_by_value":"0.1.0",
"slice_interval":1,
"detail":true,
"page":1,
"num_per_page":30,
"limit":100000,
"all_page":true
}
'
4.4. 分布分析用户明细报告
[POST /addictions/user/list]
{
"event_name": "BuyGold",
"filter": {
"conditions": [
{
"field": "event.BuyGold.$lib_version",
"function": "contain",
"params": [
"0.1.0"
]
}
]
},
"rollup_date": false,
"from_date": "2015-04-22",
"to_date": "2015-04-22",
"unit": "day",
"by_field": "event.SaleGold.$lib_version",
// 用户明细的分组信息
"slice_by_value": "0.1.0",
// 查看回访频率为多少的用户明细
"slice_freq": 2,
"detail": true,
// 请求的页数
"page":1,
// 每页数据条数
"num_per_page": 30,
// 限制返回的条数
"limit": 100000,
// 是否返回所有用户,如果为 true,则会无视分页参数,否则需要加上分页参数
"all_page": true
}
{
"users": [
{
"id": "1902482830",
"first_id": "23e3ff2a3ff1e1bc",
"second_id": "1696144579",
"profiles": {
"FavoriteFruits": [
"Raspberry",
"Orange"
],
"$name": "陈爍簀",
"IncomeLevel": "3000~5000",
"$city": "德阳市",
"$province": "四川省",
"$signup_time": 1.432805251963E12,
"Gender": "男",
"Age": 20.0
}
},
{
"id": "3834577070",
"first_id": "51b0fecc44b5c75b",
"second_id": "1602971488",
"profiles": {
"FavoriteFruits": [
"Cranberry",
"Guava",
"cantaloupe"
],
"$name": "周瀌狙",
"IncomeLevel": "10000~20000",
"$city": "嘉峪关市",
"$province": "甘肃省",
"$signup_time": 1.432799799529E12,
"Gender": "女",
"Age": 20.0
}
}
],
"size": 2,
"page_num": 1,
"column_name":[
"FavoriteFruits",
"$name",
"Age",
"Gender",
"IncomeLevel",
"$signup_time",
"$city",
"$province"
]
}
curl 'https://golddemo.cloud.sensorsdata.cn/api/addictions/user/list?token=53f48d27f5ed6e701241d7548093274533d0af3d9d2ae80740a629836897900d&project=default' \
-H 'Content-Type: application/json' \
--data-binary '
{
"event_name":"BuyGold",
"filter":{
"conditions":[
{
"field":"event.BuyGold.$lib_version",
"function":"contain",
"params":[
"0.1.0"
]
}
]
},
"rollup_date":false,
"from_date":"2015-04-22",
"to_date":"2015-04-22",
"unit":"day",
"by_field":"event.SaleGold.$lib_version",
"slice_by_value":"0.1.0",
"slice_freq":2,
"detail":true,
"page":1,
"num_per_page":30,
"limit":100000,
"all_page":true
}
'
4.5. 用户列表明细报告
[POST /users/list]
{
"filter": {
"conditions": [
{
// 这里可以任意增加筛选条件
// 可以指定指分群或标签名,如想获取某个分群的用户,则指定 为 'user.fenqun1'
// 也可以指定普通属性名,如 'user.birthday'
// 更多的用法请参考上面的筛选表达式说明
"field": "user.test",
"function": "isTrue"
}
]
},
"profiles": [
// 请求的用户属性列表
"user.$utm_source"
],
// 请求的页数,从 0 开始,0 代表第一页
"page":0,
// 每页数据条数
"num_per_page": 30,
// 限制返回的条数
"limit": 100000,
// 是否返回所有用户,如果为 true,则会无视分页参数,否则需要加上分页参数
"all_page": true
}
{
"users": [
{
"id": "1902482830",
"first_id": "23e3ff2a3ff1e1bc",
"second_id": "1696144579",
"profiles": {
"FavoriteFruits": [
"Raspberry",
"Orange"
],
"$name": "陈爍簀",
"IncomeLevel": "3000~5000",
"$city": "德阳市",
"$province": "四川省",
"$signup_time": 1.432805251963E12,
"Gender": "男",
"Age": 20.0
}
},
{
"id": "3834577070",
"first_id": "51b0fecc44b5c75b",
"second_id": "1602971488",
"profiles": {
"FavoriteFruits": [
"Cranberry",
"Guava",
"cantaloupe"
],
"$name": "周瀌狙",
"IncomeLevel": "10000~20000",
"$city": "嘉峪关市",
"$province": "甘肃省",
"$signup_time": 1.432799799529E12,
"Gender": "女",
"Age": 20.0
}
}
],
"size": 2,
"page_num": 1,
"column_name":[
"FavoriteFruits",
"$name",
"Age",
"Gender",
"IncomeLevel",
"$signup_time",
"$city",
"$province"
]
}
curl 'https://golddemo.cloud.sensorsdata.cn/api/users/list?token=53f48d27f5ed6e701241d7548093274533d0af3d9d2ae80740a629836897900d&project=default' \
-H 'Content-Type: application/json' \
--data-binary '
{
"filter":{
"conditions":[
{
"field":"user.test",
"function":"isTrue"
}
]
},
"profiles":[
"user.$utm_source"
],
"page":0,
"num_per_page":30,
"limit":100000,
"all_page":true
}
'
这个接口也可以指定要查询的用户id,这样能获取指定用户的属性信息。
{
"filter":{
"conditions":[
{
"field":"user.test",
"function":"isTrue"
}
]
},
"users":["1902482830", "3834577070"],
"profiles":[
"user.$utm_source"
]
}
{
"users": [
{
"id": "1902482830",
"first_id": "23e3ff2a3ff1e1bc",
"second_id": "1696144579",
"profiles": {
"FavoriteFruits": [
"Raspberry",
"Orange"
],
"$name": "陈爍簀",
"IncomeLevel": "3000~5000",
"$city": "德阳市",
"$province": "四川省",
"$signup_time": 1.432805251963E12,
"Gender": "男",
"Age": 20.0
}
},
{
"id": "3834577070",
"first_id": "51b0fecc44b5c75b",
"second_id": "1602971488",
"profiles": {
"FavoriteFruits": [
"Cranberry",
"Guava",
"cantaloupe"
],
"$name": "周瀌狙",
"IncomeLevel": "10000~20000",
"$city": "嘉峪关市",
"$province": "甘肃省",
"$signup_time": 1.432799799529E12,
"Gender": "女",
"Age": 20.0
}
}
],
"size": 2,
"page_num": 1,
"column_name":[
"FavoriteFruits",
"$name",
"Age",
"Gender",
"IncomeLevel",
"$signup_time",
"$city",
"$province"
]
}
curl 'https://golddemo.cloud.sensorsdata.cn/api/users/list?token=53f48d27f5ed6e701241d7548093274533d0af3d9d2ae80740a629836897900d&project=default' \
-H 'Content-Type: application/json' \
--data-binary '
{
"filter":{
"conditions":[
{
"field":"user.test",
"function":"isTrue"
}
]
},
"users":["1902482830", "3834577070"],
"profiles":[
"user.$utm_source"
]
}
'
4.6. 用户路径用户明细报告
[POST /users/list]
{
"slice_element_filter": [
{
"slice_event_name": "StartApp",
"slice_by_value": "8.1"
}
],
"next_slice_element_filter": [
{
"slice_event_name": "SaleGold",
"slice_by_value": "1"
}
], // 合计,后续事件统计和流失不需要这个过滤条件
"session_level": "0", // 源端的层数
"source_type": "initial_event",
"source_event": {
"event_name": "StartApp",
"filter": {
"conditions": [
{
"field": "event.StartApp.$wifi",
"function": "isTrue"
}
]
}
},
"event_names": [
"BuyBullion",
"BuyGold",
"SaleGold",
"StartApp"
],
"by_fields": [
"event.SaleGold.$wifi",
"event.StartApp.$os_version"
],
"session_interval": "1200",
"from_date": "2017-05-01",
"to_date": "2017-05-22",
"detail": true,
"col_limit": "20",
"row_limit": "7",
"sampling_factor": 64,
"is_aggregate": "false", // 当前节点是否表示更多
"edge_type": "ALL", // 可以是WASTAGE,RETENTION和ALL,分别表示流失节点,后续事件统计,该节点合计人数
"is_next_aggregate": "false", // 后续节点是否表示更多
"num_per_page": 50,
"all_page": true,
"filter": {},
"use_cache": false
}
{
"users": [
{
"id": "1902482830",
"first_id": "23e3ff2a3ff1e1bc",
"second_id": "1696144579",
"profiles": {
"FavoriteFruits": [
"Raspberry",
"Orange"
],
"$name": "陈爍簀",
"IncomeLevel": "3000~5000",
"$city": "德阳市",
"$province": "四川省",
"$signup_time": 1.432805251963E12,
"Gender": "男",
"Age": 20.0
}
},
{
"id": "3834577070",
"first_id": "51b0fecc44b5c75b",
"second_id": "1602971488",
"profiles": {
"FavoriteFruits": [
"Cranberry",
"Guava",
"cantaloupe"
],
"$name": "周瀌狙",
"IncomeLevel": "10000~20000",
"$city": "嘉峪关市",
"$province": "甘肃省",
"$signup_time": 1.432799799529E12,
"Gender": "女",
"Age": 20.0
}
}
],
"size": 2,
"page_num": 1,
"column_name":[
"FavoriteFruits",
"$name",
"Age",
"Gender",
"IncomeLevel",
"$signup_time",
"$city",
"$province"
]
}
curl 'https://golddemo.cloud.sensorsdata.cn/api/users/list?token=53f48d27f5ed6e701241d7548093274533d0af3d9d2ae80740a629836897900d&project=default' \
-H 'Content-Type: application/json' \
--data-binary '
{
"slice_element_filter":[
{
"slice_event_name":"StartApp",
"slice_by_value":"8.1"
}
],
"next_slice_element_filter":[
{
"slice_event_name":"SaleGold",
"slice_by_value":"1"
}
],
"session_level":"0",
"source_type":"initial_event",
"source_event":{
"event_name":"StartApp",
"filter":{
"conditions":[
{
"field":"event.StartApp.$wifi",
"function":"isTrue"
}
]
}
},
"event_names":[
"BuyBullion",
"BuyGold",
"SaleGold",
"StartApp"
],
"by_fields":[
"event.SaleGold.$wifi",
"event.StartApp.$os_version"
],
"session_interval":"1200",
"from_date":"2017-05-01",
"to_date":"2017-05-22",
"detail":true,
"col_limit":"20",
"row_limit":"7",
"sampling_factor":64,
"is_aggregate":"false",
"edge_type":"ALL",
"is_next_aggregate":"false",
"num_per_page":50,
"all_page":true,
"filter":{
},
"use_cache":false
}
'
5. 自定义查询和用户行为列表
5.1. 自定义查询
[POST /sql/query]
通过 SQL 进行自定义查询,表结构及自定义查询方法详见 自定义查询 功能的介绍。
- Parameters
- q: 查询的 SQL,例如
SELECT event,time,user_id FROM events LIMIT 10
。 - format: 可能的值包括
- csv:默认格式
- json:每行一个 JSON
- event_json:导出可以用于直接导入的 Event Track 格式的 Json,1.15 及之后的版本支持,且不支持使用别名(select $utm_source as utm_source ……)
- profile_json:导出可以用于直接导入的 Profile Set/Track Signup 格式的 Json,1.15 及之后的版本支持,且不支持使用别名(select $utm_source as utm_source ……)
- item_json: 导出可以用户直接导入神策系统的 item_set 格式的 Json,1.15.1646 及之后的版本才支,且不支持使用别名(select $utm_source as utm_source ……)
- sql:不直接返回数据,而是翻译为一条可以直接在 Spark/Impala/Hive 里执行的 SQL
q=SELECT * FROM events LIMIT 10
format=csv
event time user_id
RechargeCash 2015-09-02 13:01:00.125336 1731174795
RechargeCash 2015-09-02 02:02:48.133002 1751664241
RechargeCash 2015-09-02 13:01:53.308174 1784316911
RechargeCash 2015-09-02 09:09:07.784417 1793667170
RechargeCash 2015-09-02 09:09:42.420781 1807294808
RechargeCash 2015-09-02 16:04:06.211421 1808422371
RechargeCash 2015-09-02 08:08:44.646672 1810351186
RechargeCash 2015-09-02 00:12:20.456509 1874214895
RechargeCash 2015-09-02 02:02:38.494175 1897237370
RechargeCash 2015-09-02 15:03:08.338102 2012805794
该接口和其它 API 的调用方式有所不同,q 参数直接用 GET/POST 参数传递即可,csv 格式返回的数据为 \t 分隔。一个使用 curl 的例子如下:
curl 'https://saasdemo.cloud.sensorsdata.cn/api/sql/query?token=53f48d27f5ed6e701241d7548093274533d0af3d9d2ae80740a629836897900d&project=default' \
-X POST \
--data-urlencode "q=SELECT * FROM events LIMIT 10" \
--data-urlencode "format=csv"
注意: (1)如果查询的事件是预置事件,那么 $ 符号需要使用 \ 进行转义。 (2)如果是导出 items 表中的数据,需要保证神策系统版本为 1.15.1646 及之后的版本。
5.2. 用户行为列表
[POST /users/event/list]
获取一个或者多个用户在某一段时间内的详细行为信息。
{
"users": [
86015190,
81952822,
87961512
],
"from_date": "2015-04-22",
"to_date": "2015-04-22",
// false 表示 users 参数指定的是内部的 user_id,true 表示传入的是 distinct_id
"distinct_id": false
}
{
"events": [
{
"user_id": "422337220",
"event": "SaleGold",
"time": 1432822231055,
"properties": {
"$province": "辽宁省",
"$screen_height": 640.0,
"$city": "大连市",
"$os": "iOS",
"$screen_width": 320.0,
"$model": "iPhone 5",
"$lib_version": "0.1.0",
"$app_version": "1.3",
"$manufacturer": "Apple",
"$os_version": "7.0",
"$wifi": 1.0,
"$lib": "python",
"SaleStep": 1.0
}
},
{
"user_id": "422337220",
"event": "SaleGold",
"time": 1432822232022,
"properties": {
"$province": "辽宁省",
"$screen_height": 640.0,
"$city": "大连市",
"$os": "iOS",
"$screen_width": 320.0,
"$model": "iPhone 5",
"$lib_version": "0.1.0",
"$app_version": "1.3",
"$manufacturer": "Apple",
"$os_version": "7.0",
"$wifi": 1.0,
"$lib": "python",
"GoldPrice": 240.34,
"GoldWeight": 16153.0,
"SaleStep": 2.0
}
}
]
}
curl 'https://golddemo.cloud.sensorsdata.cn/api/users/event/list?token=53f48d27f5ed6e701241d7548093274533d0af3d9d2ae80740a629836897900d&project=default' \
-H 'Content-Type: application/json' \
--data-binary '
{
"users":[
86015190,
81952822,
87961512
],
"from_date":"2015-04-22",
"to_date":"2015-04-22",
"distinct_id":false
}
'
6. 常见问题
6.1. 查询 API 提示 {"error":"没有访问权限,请检查 project 和 token"} ?
首先:检查下数据接收地址的域名是不是客户系统自己环境登录系统的域名(注意,不是数据接收地址的域名哦)
其次:检查 project 和 token 是不是同一个项目的参数
最后:检查 token 是 admin 账号下的 API Secret 还是通过自己的账号密码获取的 Access token。如果是 API Secret ,token 直接放在 url 链接后面。如果是 Access token ,token 参数不能直接放在 url 链接后面 ,需要放在 Header 参数中,即添加参数:
-H 'sensorsdata-token: {获取的 Access token}'
具体可参考此文档:http://manual.sensorsdata.cn/sa/latest/page-1573880.html#id-.%E5%8A%9F%E8%83%BDAPIv1.13-%E8%8E%B7%E5%8F%96ACCESS_TOKEN
6.2. 查询引擎错误
可以检查下查询的 API 接口和参数名是否对应,以及设置的参数格式是否正确。
6.3. 报错API return 422
API SQL 查询时,$ 符号需要转译
6.4. API 查询或者下载用户列表等使用后台分析服务时,504报错
服务转发配置没有配置连接超时时间或者超时时间设置较短,让客户修改超时时间即可。一般我们建议数据接收地址超时时间为 60 ,后台分析服务超时时间为 1800。
6.5. 是否可以使用查询 API 将查询结果返回到客户线上的业务用于实时分析?查询 API 的请求频次有什么限制?
神策查询 API 只适合低频调用,相应速度取决如下两方面:
- 实际的查询场景:如数据量、查询数据的时间范围、所用的分析模型或 SQL 的复杂度等;
- 硬件和网络配置:如 CPU、内存、网卡、硬盘等
在查询场景和神策服务器配置匹配的前提下,神策建议 API 调用频率保持在分钟级,单次查询的数据范围在 1 万条以内,同一时间最大并发请求量不超过 10 个,以确保查询相应和神策服务性能稳定。如条件超出如上描述范围,可能出现无法响应/查询慢/甚至神策服务性能不稳定情况。
如上为神策根据历史对接经验给出,考虑到不同客户查询调用的场景各有差异,建议以实测为准,根据实际测试结果合理调整查询条件和调用频次。
注:本文档内容为神策产品使用和技术细节说明文档,不包含适销类条款;具体企业采购产品和技术服务内容,以商业采购合同为准。